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In this paper, it is intended to introduce a method to solve multi-objective optimization
problems and to evaluate its performance. In order to verify the performance of this method it
is applied for a vertical roller mill for Portland cement. A design process is defined with the
compromise decision support problem concept and a design process consists of two steps : the
design of experiments and mathematical programming. In this process, a designer decides an
object that the objective function is going to pursuit and a non-linear optimization is performed
composing objective constraints with practical constraints. In this method, response surfaces are
used to model objectives (stress, deflection and weight) and the optimization is performed for
each of the objectives while handling the remaining ones as constraints. The response surfaces
are constructed using orthogonal polynomials, and orthogonal array as design of experiment,
with analysis of variance for variable selection. In addition, it establishes the relative influence
of the design variables in the objectives variability. The constrained optimization problems are
solved using sequential quadratic programming. From the results, it is found that the method in
this paper is a very effective and powerful for the multi-objective optimization of various
practical design problems. It provides, moreover, a reference of design to judge the amount of
excess or shortage from the final object.
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In these days, reduction of design processes,
design time and higher design quality have been
typically required for the engineering design opti-
mization problems. They have been solved rapid-
ly during recent years, mainly due to faster com-
putation capability, better algorithms, more fre-
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quent use of finite element analysis (FEA) and
mathematical programming (Zhang et al., 2003).
Most methods in the literatures, however, are
applicable to only single-objective optimization
problems. In addition, in these single-objective
methods, differentiability is required basically and
this limits their applicability to more general prob-
lems. Gunawan and Azarm (2005) developed a
robust optimization method that addresses some
of the shortcomings of the previous methods.
Despite its advantages, however, Gunawan and
Azarm’s method is applicable only to single-ob-
jective optimization problems.

For complex problems, such as multi-objective
problems, the objective functions are often noisy
and it is hard to find their gradients. There are
few attempts in the literature for robust optimi-
zation problems that have multiple criteria. The
attempts followed the Taguchi’s design of ex-
periment (DOE) approach : Pignatiello (1993),
Elsayed and Chen (1993), Tsui (1999). Those
method are hard to obtain better solutions be-
cause of limited number of candidate design
points. To overcome this defect, it is necessary to
fit objective function to design variables by using
response surface methodology (RSM) (Roux et
al., 1998 ; Timothy et al., 2001 ; Youn et al., 2004 ;
Redhe et al., 2004). By the introduction of these
response surfaces, noisy or unphysical compo-
nents of the response would be smoothed out. The
optimal solution is then searched on these fitted
response surfaces rather than on the real ones.
This optimization depends on the proper level
and arrangement of design variables because the
orthogonal arrays are repeatedly used during
design processes. In addition, the design space
between the level of design variables can not be
accurately represented by the fitted response sur-
face. Thus mathematical programming is requir-
ed for better optimal solutions after large reduc-
tion of an objective function by DOE approach
(Kurtaran et al., 2002).

Sequential Quadratic Programming (SQP) is
suitable for continuous nonlinear objective func-
tions such as stress, deflection and natural fre-
quency and so on, with both equality and inequa-
lity constraint functions. SQP is much more prac-

tical than any other similar algorithms (Redhe
et al,, 2004) since the convergence is typically
achieved in a few iterations.

It is attempted, in this study, to express the ob-
jective functions with design variables after per-
forming structural analysis following the design
of experiment. In addition, it is performed to
obtain the relationship between the objective
functions and the design variables by the use of
F-test. And then, the SQP is applied for struc-
tural multi-objective optimization problem of
portland cement vertical roller mill and the best
optimal solution is obtained from the sets of
Pareto solutions.

2. Background and Proposed
Methodology

In this study, a combination of the RSM and
SQP has been used. Detailed optimization process
will be presented in the following chapter.

Figure 1 shows the procedure of multi-objec-
tive optimization using DOE, RSM and SQP. As
seen in the figure, the first step is to identify the
design space. This is typically a multi-dimen-
sional problem defined by the upper and lower
bounds of each design variable over some region
of interest. Once the design space has been iden-
tified, an experimental design is selected to sam-

‘ Identification of design space for existing model ‘

&

‘ Selection of design variables, constraints and objectives ‘

‘ Selection of design of experiment ‘

=

| Performing structural analysis according to DOE |

o=

| Construction of response surface models |

-

| Application of SQP to multi-objective optimization |

I

Determination of the best optimal solution out of sets
of pareto solutions

| Werification of the predicted optimal solution using FEA |

Fig. 1 Procedure of multi-objective optimization
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ple the design space. After an experimental de-
sign is chosen, the design space is sampled to
construct approximations of each objective and
constraint function. In this study, two approxi-
mations (Chen et al., 2002) are suggested.

(1) First-order multiple regression polynomial
equation

(2) Second-order Chebyshev orthogonal poly-
nomial equation

After the approximations have been construct-
ed, they must be verified to ensure sufficient
accuracy. Verification can be achieved through
mean absolute percentage error.

n
2 | vi—y:[x100 (1)

MAPEZL
7 =1

where y; is the actual value of the objective
function, y; is the predicted value of the objective
function, and # is the number of data. Once the
response surface model has been verified, SQP
can be applied to design points. And then the best
optimal solution is selected and this predicted
optimal solution is verified by FEA.

2.1 Response surface method

Design of experiments is performed prior to
any FEA. The difficulty lies in minimizing the
number of computer simulations, at the same
time, in obtaining a good response surface ap-
proximation. To carry out response surface meth-
od, the regression method is applied to FEA
results to build mathematical models. The models
are then formulated as an objective function
in an optimization problem that is consequently
optimized using SQP to obtain the minimum
mass, stress and deflection of vertical roller mill.
The RSM is used to fit the FEA data to the mul-
tiple regression polynomial equation of degree
one and Chebyshev orthogonal polynomial equa-
tion of degree two to obtain regression coeffici-
ents. The former is obtained by MINITAB R.13,
while the latter is obtained by Excel. The follow-
ing Egs. (2) and (3) denote the multiple regres-
sion polynomial equation and Chebyshev ortho-
gonal polynomial equation, respectively (Park,
1996) .

y=FR+ L1t Buxi+Bx:te (2)

where y represents mass, stress and deflection,
x;: the 7-th design variable, 3; : the {-th estimat-
ed regression coefficient, ¢ : experimental error in
each model.

Using Chebyshev orthogonal polynomial, the
levels of each design variable are assumed to be
equally spaced in Eq. (3)

y=Rot+Blx—x) +Bf(x—x) —2(P—1)/12}
+Bs{(x—%)3—c*(31*—7) (x—x) /20} (3)

A degree % should be less than a level number /
and maximum degree of design variable is /-1. x
is the average of the design variable values and ¢
is the level interval coefficient. 8, are given as an
orthogonality coefficient in Egq. (4) (Gautschi,
1996 ; Baek et al., 2004).

[o=The average of all the FEA values
Bi:bivgl 51(1411) yy/vgl E?(Av> Yo (4)

where A, means each level of A and y, means
the average of the FEA values at each level.
Taylor series approximation is not considered
as an objective function because it is suitable
only for narrow level interval of design variable.
An approximate equation in this study needs
wider level interval.

Chebyshev orthogonal polynomial, compared
with Taylor series is available for sufficiently
wide level interval of design variables. It is
thought, therefore, that Chebyshev orthogonal
polynomial is very effective for the case that the
level interval of design variables is very wide
like the practical structure design. The accuracy
of predicted optimal solution is verified by FEA.

2.2 Design of experiment

In order to minimize the effect of the noise on
the fitted polynomial and to improve the presen-
tation of the design space, the design of experi-
ment can be used to select the data used in the
construction of response surfaces. There are a
number of different design of experiment techni-
ques. In this study, orthogonal array (OA) is
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used to select an effective design space. OA is a
fractional factorial matrix that assures a balanced
comparison of levels of any factors or interaction
of factors. Because the points are not necessarily
at vertices, orthogonal array tools can be more
robust than any other design of experiments. Bas-
ed on the theory of design of experiments, OA can
significantly reduces the number of experimental
configurations.

2.3 Optimization algorithms using SQP

Engineering design by its very nature is multi-
objective, often requiring trade-offs between dis-
parate and conflicting objectives. Designing the
cross-section of a cantilever beam is a classic
example of the trade-offs embodied in design:
minimizing the weight and deflection of the beam
requires a trade-off between both objectives since
improving one worsens the other. Thus multi-
objective design problems are dependent on how
a designer treats the priority of objective func-
tions (Bramanti et al., 2001 ; Wilson et al., 2001 ;
Tappeta et al., 2001).

Generally, objective functions are divided into
two kinds : one objective function which must be
satisfied and the other objective functions which
is treated as behavior constraints. For a single
objective function an optimization is performed
repeatedly from high to low priority. The basic
principle of SQP is to replace the given nonlinear
problem by a sequence of quadratic subproblems
that are easier to solve. Proper convergence prop-
erties of constraints are achieved with some
modifications on the basis of SQP algorithms. An
SQP procedure implemented in the this study
(MATLAB software) is employed to minimize
mass, stress and deflection that are formulated by
RSM, a polynomial functions of some design
variables bounded by upper and lower limits. The
basic process of an SQP can be expressed in the
following steps.

Step 1: Set up and solve a quadratic pro-
gramming (QP) subproblem, giving a search di-
rection

Step 2: Test for convergence, stop if it is satis-
fied.

Step 3 : Step forward to a new point along the
search direction.

Step 4 : Update the hessian matrix in QP and go
to step 1

2.4 Model verification

After optimal conditions are obtained by the
SQP, experiments based on the conditions are
performed by FEA. The results are then analyzed
by analysis of variance (ANOVA) from MINI-
TAB R.13, with F-test to detect the difference
between the predicted values and the observed
ones.

2. Industrial Application

3.1 Vertical roller mill

A vertical roller mill consists of 8 table liners
with radius 2.39 m. Its shape is symmetrical about
the center axis and its volume is 16,059 X 10° m®.
It revolves stably at 2.34 rad/s. A general finite
element analysis program used in this study is
ANSYS. The 3-D structural model is composed
of 100,638 nodes and 88,149 finite elements. The
results of structural analysis of Baek et al.(2004)
is referred in this analysis.

Figure 2 shows the operation state of vertical
roller mill and the data are gathered in every 4
seconds and printed in every 10 minutes. It seems
that the vertical roller mill is operated stably for

o " SN T T VR, S T e ¥ e Sl P S

23-M0U  1:36:08

Hydraulic pressure applied to
table liner of vertical roller mill, P (bar)
]
=

Fig. 2 Normal operating conditions for vertical
roller mill
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repeated load conditions. These results provide
quantitative information to decide the objective
and constraint functions of structural behavior of
the mill.

Based on the above information, 7 design var-
iables are chosen as shown in Fig. 3 to reinforce
the area of the mill where the stress is concen-
trated.

Figure 4 shows the stress and deflection distri-
bution of the primitive design model. It is impor-
tant to control the stress, deflection and mass of
the mill from the viewpoint of the safety and
productivity. It is attempted to establish objective
functions of the mill with stress, deflection and
weight of the table liner.

Fig. 3 FE model and design variables of vertical
roller mill

Total weight
of grinding bowl

3.2 Response surface modeling

It is intended in this study to develope models
representing the mass, stress, deflection of a verti-
cal roller mill using RSM. In Table 1 levels of
design variables are shown. Mixed orthogonal
array of L;g(2'X3%) is used to perform DOE be-
cause there are design variables with two dif-
ferent levels, and interactions can be ignored.
Using this experimental design, the levels of each
design variable are assumed to be equally spaced.
The FEA results of their means based on OA and
ANOVA are presented in Tables 2, 3 and 4.

Significance probability P is a very useful para-
meter which determines the significance of design
variable. If the value of P is less than 0.01, it is
said that a design variable is significant at the
0.01 or 1% level. According to the results, ap-
proximate equations are constructed by a curve

Table 1 The uncoded design variables and their

levels
De.s ign Level 1 Level 2 Level 3
variable
X7 initial baseline —
X1 baseline 15 mm 25 mm
X2 —10 mm —20 mm baseline
X3 —40 mm —20 mm baseline
X4 baseline 20 mm 40 mm
X5 —40 mm —20 mm baseline
X6 baseline 20 mm 40 mm

!;_-‘-;_q%_ Deflection of table liner

NBOOCCONO0000BANN 1337 153}

Stress of table liner
(structural critical area)

Fig. 4 Stress distribution of the primitive model



Trade-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials 371
Table 2 Result of structural analysis
Analysis Mass Table liner | Deflection Analysis Mass Table liner | Deflection
number (kg/mm3) stress (MPa) (mm) number (kg/mms) stress (MPa) (mm)
1 1.1463 214.083 5.817 10 1.2325 180.974 4.756
2 1.1961 193.521 5.211 11 1.1579 202.583 5.588
3 1.2771 180.240 4.684 12 1.1832 197.703 5.267
4 1.2160 191.223 5.330 13 1.2419 179.587 4.867
5 1.2116 187.398 5.069 14 1.1835 209.993 5.050
6 1.2363 205.432 4.928 15 1.1926 195.624 5.395
7 1.2122 207.640 5.165 16 1.2207 198.468 4.821
8 1.2621 189.614 4.653 17 1.1997 183.535 5.219
9 1.2191 188.833 5.295 18 1.2268 201.105 5.031
Table 3 Variance analysis of multiple regression polynomial for deflection
De‘sign Unstandardized Std. coeff. Toratio Pvalue
variable B Std. error Beta
Const. 6.467 0.044 — 147.513 0
X7 —1.8E-2 0.013 —0.029 —1.358 0.204
X1 —9.5E-2 0.008 —0.526 —11.989 0
X2 —1.3E-2 0.008 —0.035 —1.642 0.132
X3 —0.313 0.008 —0.845 —39.493 0
X4 —0.141 0.008 —0.380 —17.778 0
X5 —24E-3 0.008 —0.007 —0.305 0.766
X6 —9.7E-2 0.008 —0.263 —12.273 0
Model Sum of DOF Mean F-ratio P-value
squares square
Regression 1.636 7 0.234 310.674 0
Residual 7.552E-2 10 7.522E-4
Total 1.643 17

fitting procedure. In case of multiple regression
polynomial adequate models are selected from all
the design variables while in case of Chebyshev
orthogonal polynomial is selected only from sta-
tistically significant design variables. In this study
the regression coefficients of statistically signifi-
cant models are given in Egs. (5) and (6)

VI roction =6.467—0.01821—0.095x,—0.013x3

5
—0.313x4—0.141x5—0.0024.5—0.097x7 )

Y2 rion =6.498 —0.0949:x, —0.418 x4
+0.02633x7—0.1406x2—0.097 177

The adequacy and the fitness of the functions of

design variables of response surfaces modeled are
examined using ANOVA.

In Table 5 the mean absolute percentage error
for each model (polynomial) is shown to com-
pare FEA values with approximate ones esti-
mated from objective functions. In case of stress
and deflection functions, it is investigated that
Chebyshev orthogonal polynomial is more useful
than multiple regression polynomial. Although
the coefficients of higher order terms are not
known or there is much more difference between
terms, Chebyshev orthogonal polynomial can
normalize the base value and build regression
model efficiently.
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Table 4 Variance analysis of Chebyshev orthogonal polynomial for deflection

Desi
e.slgn Sum of DOF Variance F-ratio P-value
variable squares
X7 Linear 0.00139 1 0.00139 O 4.3 0.174
Linear 0.10811 1 0.10811 335.34 0.003**
X
' Quadratic 0.00146 1 0.00146 4.52 0.167
Linear 0.00203 1 0.00203 O 6.29 0.129
X
: Quadratic 0.00139 1 0.00139 4.32 0.173
Linear 1.17313 1 1.17313 3638.9 0**
X
’ Quadratic 0.00277 1 0.00277 8.60 0.099
Linear 0.23773 1 0.23773 737.39 0.001**
X.
! Quadratic 0.00037 1 0.00037 1.14 0.398
Linear 0.00007 1 0.00007 O 0.22 0.687
X
’ Quadratic 0.00045 1 0.00045 1.39 0.360
Linear 0.1133 1 0.1133 351.43 0.003**
X
¢ Quadratic 0.00043 1 0.00043 1.32 0.369
Linear 0 1 o O 0.01 0.932
e
Quadratic 0.00001 1 0.00001 0.02 0.896
Error 0.00064 2 0.00032
Total 1.64327 17
(O Pooling, * 3% : 1% Level of significance
Table 5 MAPE of polynomial regression expression &2
- 6o —=—FEM
Degree Mass Stress Deflection “T --O-- 18t Regression
Se-2nd R i
Ist polynomial | 0.044% | 7.501% | 6.603% so Y e
2nd polynomial | 9.629% | 6.536% | 6.057% E *r 4
;E’ 54 b .
2% — .S s2f A o f A
220 [ —=—FEM 2 a \ y :
=015t Regression % *r /
s 4 2nd Regression Q &)
& 210l “r Q =
=
& 206 [ 46
w
g 200 &4 L L L I I i L L i
= F 0 2 4 [ ] 0 12 14 16 18
@ g5 R
@ i un number
@
£ o Fig. 6 Relation between deflection and run number
L in DOE
g 180 |-
175 =
170 ! L 1 . . 1 : : . der terms. In case of mass functions, however,
a 2 4 ] a 10 12 14 16 18

Run number
Fig. 5 Relation between Von-Mises stress and run
number in DOE

These results are because it can maintain the
independence between each term and have good
regression capability only with partial lower or-

multiple regression polynomial which is affected
by all the design variables has better approxima-
tion than Chebyshev orthogonal polynomial. In
Figs. 5, 6 and 7 the comparison of FEA values
and approximation values of objective functions
is shown. The functions of response surface ap-
proximation are depicted in the following Egs.
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—=—FEM
1.28 r © - 1st Regression
: TN - 2nd Regression

1.26 |-

Mass per unit volume (kg/mm)
R
T

Run number

Fig. 7 Relation between mass per unit volume and
run number in DOE

(8) ~ (10), respectively.

Vs=| Alstress|=230.65—3.161x4+0.5578x3

7
—11.6891x5—0.09717; @)
Va=| Alge srection| =6.498 —0.0949.x, —0.418 x4 ()
+0.02633x2—0.1406x2—0.09717x7
Yn=|Alsotaimass|=1.080—0.015x,+0.01229x;
+0.005458x5+0.02338x,1+0.01824x5
+0.0002167x6+0.01812x7
9)

3.3 Problem formulation

In order to improve the safety and productivity
of the mill, the objective functions of stress, de-
flection and mass are define and they are limited
by predefined constraint conditions. The vertical
roller mill is parameterized with 7 design var-
iables. The multi-objective optimization of verti-
cal roller mill under fatigue load in the standard
mathematical format can be formulated as

(a) Objective function

Minimize {ystress, Vde flections yweight}

Vsiress=185.8 MPa (Fatigue limit of the mill
material), Vae siection=>5.45 MM, Vueign:=1.2038
kg/mm?®, where mass is defined as unit mass of
axisymmetric model with thickness | mm for
efficient optimization calculation.

(b) Constraint functions on the design var-
iables

1< <2, 1<x,;<3 (1=2, 3, =+, 7)

34 Trade-off Analysis in multi-objective

optimization

In multi-objective optimization problems, there
exist trade-off functions between each objective
functions. The minimization solution satisfying
all the objective functions simultaneously, there-
fore, does not exits generally. Accordingly each
objective function modifies the required objective
and allowable limits which are changeable and
then the optimization calculation is executed from
the higher priority.

In case of performing optimization using SQP,
there is always the priority between objective
functions. It is supposed that the first, second and
the third objective functions are related to the
stress, the deflection and the mass respectively.
Then SQP is used to find the optimum solution
for the response surface model in an optimization
process.

[1] First step
Minimize Vseess (10)
Subject t0 Ve riection <5.45

Vmass < 1.2038

1<x =52

1<x,<3 (7=2,3, -, 7)

[2] Second step
Minimize Vae riection (11)
Subject t0  Vmass<1.2038
Vstress<179.58+3.11
1 S}hﬁz
1<x;<3 (1=2, 3, -, 7)

[3] Third step
Minimize Ymass (12)
Subject t0  Vsiress <179.58+3.11

Ve fiection =5.2281+0.11095

1<x <=2

1<x:<3 (=2, 3, -, 7)

In Table 6 the optimal solution at each opti-
mization stage is shown. Among objective func-
tions, only primary objective function is consi-
dered as one objective function and the others are
expressed in the form of inequality constraint
functions. First of all, the problem is solved as a
single objective optimization problem and the
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Table 6 Optimal solution

Table 8 Reanalysis solution

Step Mass Stress [ Deflection Result Weight Stress | Deflection
(kg/mm®) | (MPa) (mm) (kgf) (MPa) (mm)
Initial 1.2038 227.343 6.254 Initial 129,764 | 227.343 6.254
First step 1.212 179.58 5.2299 Optimum 128,486 184.731 5.291
Second step 1.2101 182.73 5.2281 Reanalysis 128,978 185.537 5.214
Third step 1.2012 184.73 5.2904

optimum value Y* of the required objective in
the highest priority is obtained. The objective
function obtained from the first optimization
stage should be added to A(A=| Y*—Y*|/2)
and reset for a constraint function at second
optimization stage. This process is repeated until
it converges within the given tolerance.

In Table 7 the values of design variables deter-
mined after 3 iterations of the optimizer are
shown and in Fig. 8 the normalized objective
functions determined during 3 optimization cycles
are shown. Normalized objective function f is
defined as follows.

poflrer

- b1 (13)

Table 7 Optimal design variables

Result X7 X1 X2 X3 X4| Xs Xe

Optimum |y o3l 1 |13633) 3 | 1 [1.745
level

Optimum |, Ciatl 0.06 |—10{—32.7]40|—39] 149
S1ze

12 b —&— Total mass
—— Von-Mises stress
Deflection

0.9

Normalized objective function
Y =Y)IY}+1

0.7 | L L "
o 1 2 3

Number of optimization step
Fig. 8 Values of normalized objective function in

the process of mill optimization with SQP

Here Y* is the optimum value at each stage
and Y, is the required objective value. If nor-
malized objective function exceeds 1, the objective
function satisfies the constraints. At the initial
design stage, stress and deflection do not exist in
a feasible design space except for mass. The rea-
son is that the relative importance between objec-
tive functions is not estimated quantitatively and
there is much reliance on the intuition of the
designer. Final optimization results shows that all
the objective functions achieve the target values of
the constraints. In Table 2 and Fig. 8, the best
optimal design solution by SQP is much more
superior to the design solution only by DOE. The
results verified by FEA are compared with those
predicted by fitted model in Table 8.

The predicted optimal solutions are also veri-
fied by FEA solutions within tolerance error. The
difference between the verified and the predicted
objective functions is due to the error from struc-
tural analysis and approximation. Obviously, the
vertical roller mill optimized using the proposed
DOE, RSM and SQP approach has better per-
formance than the primitive design model.

This approach enables designer to have the
immediate feedback suggestions for design im-
provement. Therefore it is considered that with
the design model presented in this study, it is
possible that a high performance product design
can be achieved during the early design stage.

4. Conclusions

The RSM coupled with DOE and structural
analysis provides an efficient design space for
vertical roller mill. The statistical significance
of design variables is estimated by F-test from
ANOVA results. The multiple regression poly-
nomial of degree 1 is suitable for weight affected
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by all the design variables, however, Chebyshev
orthogonal polynomial of degree 2 is suitable for
stress and deflection affected by only particular
design variables. The vertical roller mill optimiz-
ed by DOE, RSM and SQP approach has better
performance than the primitive design model.

Therefore it is considered that SQP could be
effectively used to guide the optimization of ver-
tical roller mill and achieve a robust and reliable
design in a most efficient way.
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